Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Mar 14 2016 19:00:41
%S 1,1,3,5,1,9,11,13,15,1,19,3,2,25,27,29,1,33,5,37,39,8,43,45,2,1,3,53,
%T 55,57,59,61,9,65,67,6,1,8,75,11,2,81,83,5,87,9,13,3,95,1,99,101,18,
%U 15,107,109,111,8,10,117,2,121,24,125,1,129,131,19,135,25,139,6
%N Least k such that n + (n+1) + ... + (n+k-1) is a square.
%C a(n) is the number of consecutive integers starting from n needed to sum up to a perfect square.
%C Indices of 1's: A000290.
%C Indices of 2's: A046092(k), k!=A001108(m).
%C If a(n) is bigger than previous terms then a(n)=n*2-1, for example a(5)=9 is bigger than previous maximum, and a(5)=5*2-1.
%C Terms of A108269 never appear in a(n).
%H Harvey P. Dale, <a href="/A214728/b214728.txt">Table of n, a(n) for n = 0..1000</a>
%e a(2): 2+3+4 = 9, three summands, so a(2)=3.
%e a(3): 3+4+5+6+7 = 25, five summands, so a(3)=5.
%e a(12): 12+13 = 25, so a(12)=2.
%t lks[n_]:=Module[{k=1},While[!IntegerQ[Sqrt[Total[Range[n,n+k-1]]]], k++];k]; lks/@Range[0,80] (* _Harvey P. Dale_, Mar 14 2016 *)
%o (C)
%o int main() { // OK with GCC
%o unsigned long long i, n, sum, sr;
%o for (n=0; n<333; ++n) {
%o for (sum=0, i=n; i==n || sr*sr!=sum; ++i) sr=sqrt(sum+=i);
%o printf("%llu, ", i-n);
%o }
%o }
%Y Cf. A000290, A108269.
%K nonn,easy
%O 0,3
%A _Alex Ratushnyak_, Jul 27 2012