Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Mar 04 2022 01:58:28
%S 1,4,45,816,20475,658008,25827165,1198774720,64276915527,
%T 3911395881900,266401260897200,20082459351180240,1660305826125766950,
%U 149389005978091284720,14533945899753270066525,1520398315196482557890304,170190601112537814791748255
%N a(n) = binomial(n^2 + 3*n, n).
%C Equals the central terms of triangle A214398.
%H Robert Israel, <a href="/A214400/b214400.txt">Table of n, a(n) for n = 0..336</a>
%F a(n) = [x^n] 1/(1 - x)^((n+1)^2). - _Ilya Gutkovskiy_, Oct 04 2017
%F a(n) ~ n^(n-1/2)*exp(n+5/2)/sqrt(2*Pi). - _Robert Israel_, Mar 04 2022
%p seq(binomial(n^2+3*n,n),n=0..30); # _Robert Israel_, Mar 04 2022
%o (PARI) a(n)=binomial(n^2+3*n, n)
%Y Cf. A054688, A178325, A214398.
%K nonn
%O 0,2
%A _Paul D. Hanna_, Jul 15 2012