The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A214363 E.g.f. satisfies: A(x) = x + A(x)^2 * cosh(A(x))^2 / 2. 0

%I

%S 1,1,3,27,285,3585,56595,1062131,22868685,557624745,15204727395,

%T 458112683787,15113457195837,541914801559313,20984168325697395,

%U 872681528769576675,38793582477781496685,1835683831177469267769,92124361183712633639235,4887330703061330205124475

%N E.g.f. satisfies: A(x) = x + A(x)^2 * cosh(A(x))^2 / 2.

%C a(n) (mod 3) yields period 6 sequence: [0,0,0,0,0,2] starting at n=3.

%C a(6*n+2) == 2 (mod 3) for n>=1.

%F E.g.f. satisfies:

%F (1) A(x - x^2*cosh(x)^2/2) = x.

%F (2) A(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) cosh(x)^(2*n)*x^(2*n) / (2^n*n!).

%F (2) A(x) = x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) cosh(x)^(2*n)*x^(2*n-1) / (2^n*n!) ).

%F a(n) ~ n^(n-1) * sqrt(2/(1 + (1+2*s^2)*cosh(2*s) + 4*s*sinh(2*s))) / (exp(n) * r^(n-1/2)), where s = 0.568824148293580379787367453... is the root of the equation s*cosh(s)*(cosh(s) + s*sinh(s)) = 1, and r = s - s^2*(cosh(s))^2/2 = 0.3488028982491643456675... - _Vaclav Kotesovec_, Jan 12 2014

%e E.g.f: A(x) = x + x^2/2! + 3*x^3/3! + 27*x^4/4! + 285*x^5/5! + 3585*x^6/6! +...

%e Related expansions:

%e A(x)^2 = 2*x^2/2! + 6*x^3/3! + 30*x^4/4! + 330*x^5/5! + 4410*x^6/6! + 67830*x^7/7! +...

%e A(x) = x + cosh(x)^2*x^2/2 + d/dx cosh(x)^4*x^4/(4*2!) + d^2/dx^2 cosh(x)^6*x^6/(8*3!) + d^3/dx^3 cosh(x)^8*x^8/(16*4!) +...

%e log(A(x)/x) = 1 + cosh(x)^2*x/2 + d/dx cosh(x)^4*x^3/(4*2!) + d^2/dx^2 cosh(x)^6*x^5/(8*3!) + d^3/dx^3 cosh(x)^8*x^7/(16*4!) +...

%t Rest[CoefficientList[InverseSeries[Series[x - (x^2*Cosh[x]^2)/2,{x,0,20}],x],x] * Range[0,20]!] (* _Vaclav Kotesovec_, Jan 12 2014 *)

%o (PARI) {a(n)=n!*polcoeff(serreverse(x-x^2/2*cosh(x+x*O(x^n))^2),n)}

%o for(n=1,30,print1(a(n),", "))

%o (PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}

%o {a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, cosh(x+x*O(x^n))^(2*m)*x^(2*m)/2^m/m!)); n!*polcoeff(A, n)}

%o (PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}

%o {a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, cosh(x+x*O(x^n))^(2*m)*x^(2*m-1)/2^m/m!)+x*O(x^n))); n!*polcoeff(A, n)}

%Y Cf. A213643.

%K nonn

%O 1,3

%A _Paul D. Hanna_, Jul 13 2012

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 24 22:46 EDT 2021. Contains 347651 sequences. (Running on oeis4.)