Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Jul 16 2014 03:33:23
%S 1,1,2,8,44,308,2648,26912,315536,4193744,62302496,1023057536,
%T 18400342208,359733922880,7595810693504,172270928222720,
%U 4176595617747200,107793463235860736,2950683535353324032,85386983313510877184,2604521649171407301632,83519383797513832420352
%N E.g.f. satisfies: A(x) = exp( Integral 1 + x*A(x)^2 dx ), where the constant of integration is zero.
%C Compare to the identities:
%C (1) F(x) = exp( Integral 1 + x*F(x) dx ) when F(x) = 1/(1-x),
%C (2) G(x) = exp( Integral x*G(x)^2 dx ) when G(x) = 1/(1-x^2)^(1/2).
%F E.g.f.: sqrt(2)*exp(x)/sqrt(exp(2*x) - 2*exp(2*x)*x + 1). - _Vaclav Kotesovec_, Jan 05 2014
%F a(n) ~ 2^(n+1) * n^n / (exp(n) * (1+LambertW(exp(-1)))^(n+1)). - _Vaclav Kotesovec_, Jan 05 2014
%e E.g.f.: A(x) = 1 + x + 2*x^2/2! + 8*x^3/3! + 44*x^4/4! + 308*x^5/5! + 2648*x^6/6! +...
%e such that, by definition,
%e log(A(x)) = x + x^2/2! + 4*x^3/3! + 18*x^4/4! + 112*x^5/5! + 880*x^6/6! + 8256*x^7/7! +...
%e Related expansions:
%e x*A(x)^2 = x + 4*x^2/2! + 18*x^3/3! + 112*x^4/4! + 880*x^5/5! + 8256*x^6/6! +...
%e A(x)^2 = 1 + 2*x + 6*x^2/2! + 28*x^3/3! + 176*x^4/4! + 1376*x^5/5! + 12912*x^6/6! +...
%t CoefficientList[Series[Sqrt[2]*E^x/Sqrt[E^(2*x) - 2*E^(2*x)*x + 1], {x, 0, 20}], x] * Range[0, 20]! (* _Vaclav Kotesovec_, Jan 05 2014 *)
%o (PARI) {a(n)=local(A=1+x);for(i=1,n,A=exp(intformal(1+x*A^2)+x*O(x^n)));n!*polcoeff(A,n)}
%o for(n=0,30,print1(a(n),", "))
%Y Cf. A212914, A245266, A245267.
%K nonn
%O 0,3
%A _Paul D. Hanna_, May 30 2012