%I #22 Jun 25 2024 02:08:01
%S 1,2,1,1,3,3,1,1,1,1,1,2,2,2,4,1,2,5,1,1,1,4,5,2,1,5,1,1,1,2,4,1,1,1,
%T 3,4,2,2,2,1,5,3,1,3,6,1,2,2,1,1,3,3,1,9,5,1,1,2,1,2,4,1,1,1,7,7,2,1,
%U 6,1,1,4,3,4,2,1,1,8,3,1,1,2,1,2,1,3,1,3,2,4,2,1,5,6,3,2,1,2,1,1
%N Number of largest independent vertex subsets of the rooted tree with Matula-Goebel number n.
%C A vertex subset in a tree is said to be independent if no pair of vertices is connected by an edge. The empty set is considered to be independent.
%C The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T.
%D F. Goebel, On a 1-1 correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
%D I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.
%D I. Gutman and Y-N. Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.
%D D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Review, 10, 1968, 273.
%H Emeric Deutsch, <a href="http://arxiv.org/abs/1111.4288"> Rooted tree statistics from Matula numbers</a>, arXiv:1111.4288 [math.CO], 2011.
%H <a href="/index/Mat#matula">Index entries for sequences related to Matula-Goebel numbers</a>
%F In A212623 one finds the generating polynomial P(n,x) with respect to the number of vertices of the independent vertex subsets of the rooted tree with Matula-Goebel number n. We have a(n) = coefficient of the largest power of x in P(n,x).
%e a(5)= 3 because the rooted tree with Matula-Goebel number 5 is the path tree R - A - B - C with independent vertex subsets: {}, {R}, {A}, {B}, {C}, {R,B}, {R,C}, {A,C}; the largest size (namely 2) is attained by 3 of them.
%p with(numtheory): A := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then [x, 1] elif bigomega(n) = 1 then [expand(x*A(pi(n))[2]), expand(A(pi(n))[1])+A(pi(n))[2]] else [sort(expand(A(r(n))[1]*A(s(n))[1]/x)), sort(expand(A(r(n))[2]*A(s(n))[2]))] end if end proc: P := proc (n) options operator, arrow: sort(A(n)[1]+A(n)[2]) end proc: a := proc (n) options operator, arrow: coeff(P(n), x, degree(P(n))) end proc: seq(a(n), n = 1 .. 120);
%t r[n_] := FactorInteger[n][[1, 1]];
%t s[n_] := n/r[n];
%t A[n_] := A[n] = Which[n == 1, {x, 1}, PrimeOmega[n] == 1, {x*A[PrimePi[n]][[2]], A[PrimePi[n]][[1]] + A[PrimePi[n]][[2]]}, True, {A[r[n]][[1]]* A[s[n]][[1]]/x, A[r[n]][[2]]*A[s[n]][[2]]}];
%t P[n_] := A[n] // Total;
%t a[n_] := Coefficient[P[n], x, Exponent[P[n], x]];
%t Table[a[n], {n, 1, 100}] (* _Jean-François Alcover_, Jun 24 2024, after Maple code *)
%Y Cf. A212618, A212619, A212620, A212621, A212622, A212623, A212624, A212625, A212627, A212628, A212629, A212630, A212631, A212632.
%K nonn
%O 1,2
%A _Emeric Deutsch_, Jun 01 2012