login
Number of binary increasing trees with n nodes and "min-path" of length 4.
1

%I #18 Nov 05 2020 05:30:50

%S 0,0,1,6,25,105,490,2548,14698,93420,649715,4912776,40154387,

%T 352937312,3320636540,33305992320,354819046132,4001699525376,

%U 47637151241125,596958623741440,7855611484697773,108314507544748032,1561635447992241230,23498865431367684096

%N Number of binary increasing trees with n nodes and "min-path" of length 4.

%H Filippo Disanto, <a href="http://arxiv.org/abs/1202.1139">André permutations of the second kind associated to strictly binary increasing trees and left to right minima in their sub-permutations</a>, arXiv preprint arXiv:1202.1139 [math.CO], 2012-2014.

%Y A diagonal of A186366.

%K nonn

%O 2,4

%A _N. J. A. Sloane_, May 11 2012

%E More terms from _Alois P. Heinz_, Apr 03 2014