login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A212196 Numerators of the Bernoulli median numbers. 18

%I #28 Apr 12 2019 06:54:13

%S 1,-1,2,-8,8,-32,6112,-3712,362624,-71706112,3341113856,-79665268736,

%T 1090547664896,-38770843648,106053090598912,-5507347586961932288,

%U 136847762542978039808,-45309996254420664320,3447910579774800362340352,-916174777198089643491328

%N Numerators of the Bernoulli median numbers.

%C The Bernoulli median numbers are the numbers in the median (central) column of the difference table of the Bernoulli numbers.

%C The Sage script below is based on L. Seidel's algorithm and does not make use of a library function for the Bernoulli numbers; in fact it generates the Bernoulli numbers on the fly.

%C A181130 is an unsigned version with offset 1. A181131 are the denominators of the Bernoulli median numbers.

%H Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/ComputationAndAsymptoticsOfBernoulliNumbers">The computation and asymptotics of the Bernoulli numbers</a>.

%H Ludwig Seidel, <a href="http://publikationen.badw.de/de/003384831">Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen</a>, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187.

%F a(n) = numerator(Sum_{k=0..n} C(n,k)*Bernoulli(n+k)). - _Vladimir Kruchinin_, Apr 06 2015

%e The difference table of the Bernoulli numbers, [m] the Bernoulli median numbers.

%e [1]

%e 1/2, -1/2

%e 1/6,[-1/3], 1/6

%e 0, -1/6, 1/6, 0

%e -1/30, -1/30,[2/15], -1/30, -1/30

%e 0, 1/30, 1/15, -1/15, -1/30, 0

%e 1/42, 1/42,-1/105,[-8/105], -1/105, 1/42, 1/42

%e 0, -1/42, -1/21, -4/105, 4/105, 1/21, 1/42, 0

%e -1/30, -1/30,-1/105, 4/105, [8/105], 4/105, -1/105, -1/30, -1/30

%e 0, 1/30, 1/15, 8/105, 4/105, -4/105, -8/105, -1/15, -1/30, 0

%e 5/66, 5/66, 7/165, -4/165,-116/1155, [-32/231], -116/1155, -4/165, 7/165, ..

%e .

%e Integral_{x=0..1} 1 = 1

%e Integral_{x=0..1} (-1)^1*x^2 = -1/3

%e Integral_{x=0..1} (-1)^2*(2*x^2 - x)^2 = 2/15

%e Integral_{x=0..1} (-1)^3*(6*x^3 - 6*x^2 + x)^2 = -8/105,

%e Integral_{x=0..1} (-1)^4*(24*x^4 - 36*x^3 + 14*x^2 - x)^2 = 8/105

%e Integral_{x=0..1} (-1)^5*(120*x^5 - 240*x^4 + 150*x^3 - 30*x^2 + x)^2 = -32/231,

%e ...

%e Integral_{x=0..1} (-1)^n*(Sum_{k=0..n} Stirling2(n,k)*k!*(-x)^k)^2 = BernoulliMedian(n).

%e Compare A164555. - _Peter Luschny_, Aug 13 2017

%t max = 19; t[0] = Table[ BernoulliB[n], {n, 0, 2*max}]; t[n_] := Differences[t[0], n]; a[1] = -1; a[n_] := t[n][[n + 1]] // Numerator; Table[a[n], {n, 0, max}] (* _Jean-François Alcover_, Jun 26 2013 *)

%o (Sage)

%o def BernoulliMedian_list(n) :

%o def T(S, a) :

%o R = [a]

%o for s in S :

%o a -= s

%o R.append(a)

%o return R

%o def M(A, p) :

%o R = T(A,0)

%o S = add(r for r in R)

%o return -S / (2*p+3)

%o R = [1]; A = [1/2, -1/2]

%o for k in (0..n-2) :

%o A = T(A, M(A,k))

%o R.append(A[k+1])

%o A = T(A,0)

%o return R

%o def A212196_list(n): return [numerator(b) for b in BernoulliMedian_list(n)]

%Y Cf. A164555, A181130, A181131, A085737, A085738.

%K sign,frac

%O 0,3

%A _Peter Luschny_, May 04 2012

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 19 19:02 EDT 2024. Contains 371798 sequences. (Running on oeis4.)