login
Number of distinct finite languages over binary alphabet, whose minimum regular expression has alphabetic width n.
0

%I #7 Nov 08 2013 23:36:29

%S 2,4,24,182,1652,16854,186114

%N Number of distinct finite languages over binary alphabet, whose minimum regular expression has alphabetic width n.

%H Hermann Gruber, Jonathan Lee, and Jeffrey Shallit, <a href="http://arxiv.org/abs/1204.4982">Enumerating regular expressions and their languages</a>, arXiv:1204.4982v1 [cs.FL]

%K nonn

%O 1,1

%A _Hermann Gruber_, Apr 25 2012