login
a(0)=1; thereafter a(n) = -3*Sum_{k=1..n} binomial(2n,2k)*a(n-k).
9

%I #29 Jan 16 2022 08:19:01

%S 1,-3,51,-2163,171231,-21785223,4065116811,-1045879150683,

%T 354837765112791,-153492920593758543,82453488412268175171,

%U -53850296379425229208803,42020794900180632536559951,-38611325264740403135096141463,41264215393801752999038147563131,-50749285521783354479522581233836523

%N a(0)=1; thereafter a(n) = -3*Sum_{k=1..n} binomial(2n,2k)*a(n-k).

%C Consider the sequence defined by a(0) = 1; thereafter a(n) = c*Sum_{k=1..n} binomial(2n,2k)*a(n-k). For c = -3, -2, -1, 1, 2, 3, 4 this is A210676, A210657, A028296, A094088, A210672, A210674, A249939.

%C Exp( Sum_{n >= 1} a(n)*x^n/n) is the o.g.f. for A255926. - _Peter Bala_, Mar 13 2015

%C In general, for c<>0 is e.g.f. = 1/(c+1-c*cosh(x)) (even coefficients). For c > 0 is a(n) ~ 2 * (2*n)! / (sqrt(2*c+1) * (arccosh((c+1)/c))^(2*n+1)). For c < 0 is a(n) ~ (-1)^n * (2*n)! / (sqrt(-2*c-1) * 2^(2*n) * arccos(sqrt((2*c + 1) / (2*c)))^(2*n+1)). - _Vaclav Kotesovec_, Mar 14 2015

%H Seiichi Manyama, <a href="/A210676/b210676.txt">Table of n, a(n) for n = 0..200</a>

%F E.g.f.: 1/(3*cosh(x)-2) (even coefficients). - _Vaclav Kotesovec_, Mar 14 2015

%F a(n) ~ (-1)^n * (2*n)! / (sqrt(5) * 2^(2*n) * (arccos(sqrt(5/6)))^(2*n+1)). - _Vaclav Kotesovec_, Mar 14 2015

%p f:=proc(n,k) option remember; local i;

%p if n=0 then 1

%p else k*add(binomial(2*n,2*i)*f(n-i,k),i=1..floor(n)); fi; end;

%p g:=k->[seq(f(n,k),n=0..40)];

%p g(-3);

%t nmax=20; Table[(CoefficientList[Series[1/(3*Cosh[x]-2), {x, 0, 2*nmax}], x] * Range[0, 2*nmax]!)[[2*n+1]], {n,0,nmax}] (* _Vaclav Kotesovec_, Mar 14 2015 *)

%Y Cf. A028296, A094088, A210657, A210672, A210674, A249939, A255926.

%K sign,easy

%O 0,2

%A _N. J. A. Sloane_, Mar 28 2012