login
G.f. for Ehrhart quasi-polynomials for hyperplane arrangements of type E_6.
1

%I #22 Aug 18 2015 04:44:04

%S 0,0,0,0,0,0,0,0,0,0,0,0,1,3,9,20,42,78,139,231,372,573,861,1254,1791,

%T 2499,3432,4629,6162,8085,10492,13455,17094,21503,26832,33201,40795,

%U 49764,60333,72687,87096,103785,123075,145236,170646,199626,232617,269997,312277,359898,413448,473438,540540,615342,698608

%N G.f. for Ehrhart quasi-polynomials for hyperplane arrangements of type E_6.

%H Andreas Blass, Bruce E. Sagan, <a href="http://arxiv.org/abs/math/9801008">Characteristic and Ehrhart polynomials</a>, arXiv:math/9801008 [math.CO], 1998.

%H Andreas Blass, Bruce E. Sagan, <a href="http://dx.doi.org/10.1023/A:1008646303921">Characteristic and Ehrhart polynomials</a>, J. Algebraic Combin. 7 (1998), no. 2, 115--126. MR1609889 (99c:05204)

%H <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (3,0,-7,3,6,0,-6,-3,7,0,-3,1).

%F G.f.: x^12*f(1)^3*f(2)^3*f(3) where f(k)=1/(1-x^k).

%F G.f.: x^12/((1-x)^3*(1-x^2)^3*(1-x^3)). - _Colin Barker_, Jul 22 2013

%Y A164680 is similar but has a different offset.

%K nonn,easy

%O 0,14

%A _N. J. A. Sloane_, Mar 25 2012