login
G.f. for Ehrhart quasi-polynomials for hyperplane arrangements of type F_4.
1

%I #21 Oct 28 2015 13:50:16

%S 0,0,0,0,0,0,0,0,0,0,0,0,1,1,3,4,8,10,17,21,32,39,55,66,89,105,136,

%T 159,200,231,284,325,392,445,528,595,697,780,903,1005,1152,1275,1449,

%U 1596,1800,1974,2211,2415,2689,2926,3240,3514,3872,4186,4592,4950,5408,5814,6328,6786,7361,7875,8515,9090,9800,10440

%N G.f. for Ehrhart quasi-polynomials for hyperplane arrangements of type F_4.

%H Andreas Blass, Bruce E. Sagan, <a href="http://arxiv.org/abs/math/9801008">Characteristic and Ehrhart polynomials</a>, arXiv:math/9801008 [math.CO], 1998.

%H Andreas Blass, Bruce E. Sagan, <a href="http://dx.doi.org/10.1023/A:1008646303921">Characteristic and Ehrhart polynomials</a>, J. Algebraic Combin. 7 (1998), no. 2, 115--126. MR1609889 (99c:05204)

%H <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,-1,-1,-2,0,2,1,1,-2,-1,1).

%F G.f.: x^12*f(1)*f(2)^2*f(3)*f(4) where f(k)=1/(1-x^k).

%F G.f.: x^12/((1-x)*(1-x^2)^2*(1-x^3)*(1-x^4)). - _Colin Barker_, Jul 22 2013

%t LinearRecurrence[{1,2,-1,-1,-2,0,2,1,1,-2,-1,1},{0,0,0,0,0,0,0,0,0,0,0,0,1},70] (* _Harvey P. Dale_, Oct 28 2015 *)

%Y Similar to A115264 but has different offset.

%K nonn,easy

%O 0,15

%A _N. J. A. Sloane_, Mar 25 2012