%I
%S 1,10,10,101,201,101,910,3283,3283,910,7545,48577,89293,48577,7545,
%T 59178,679253,2266901,2266901,679253,59178,447429,9173091,55406625,
%U 101095392,55406625,9173091,447429,3300982,121178151,1323907951,4397691548
%N T(n,k)=Number of (n+1)X(k+1) 0..3 arrays containing all values 0..3 with every 2X2 subblock having two or four distinct values, and new values 0..3 introduced in row major order
%C Table starts
%C .......1.........10..........101.............910...............7545
%C ......10........201.........3283...........48577.............679253
%C .....101.......3283........89293.........2266901...........55406625
%C .....910......48577......2266901.......101095392.........4397691548
%C ....7545.....679253.....55406625......4397691548.......343737526300
%C ...59178....9173091...1323907951....188568419989.....26640186018717
%C ..447429..121178151..31194685583...8015152545175...2054059689574097
%C .3300982.1578188865.728618654983.338864385855724.157885132526126296
%H R. H. Hardin, <a href="/A210174/b210174.txt">Table of n, a(n) for n = 1..144</a>
%e Some solutions for n=4 k=3
%e ..0..0..0..0....0..1..0..0....0..1..1..1....0..1..2..0....0..1..0..2
%e ..0..1..0..2....0..0..0..1....0..0..0..1....2..3..0..0....3..2..3..1
%e ..2..3..2..0....2..2..2..3....0..1..0..0....3..2..1..0....1..0..1..1
%e ..2..2..3..1....1..1..1..0....0..1..1..1....2..3..0..0....2..3..2..1
%e ..1..2..2..0....0..0..0..0....2..3..1..2....1..0..3..3....3..3..2..1
%K nonn,tabl
%O 1,2
%A _R. H. Hardin_ Mar 18 2012
|