The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A210049 Number of (n+1)X6 0..2 arrays containing all values 0..2 with every 2X2 subblock having two distinct values, and new values 0..2 introduced in row major order 1

%I #5 Mar 31 2012 12:37:31

%S 2695,114237,5169813,240224641,11175987745,518401340537,

%T 23937024685863,1100584205159383,50415366159452709,

%U 2302277555761309945,104868233557275733099,4766740411885151983965,216298866177447277245263

%N Number of (n+1)X6 0..2 arrays containing all values 0..2 with every 2X2 subblock having two distinct values, and new values 0..2 introduced in row major order

%C Column 5 of A210052

%H R. H. Hardin, <a href="/A210049/b210049.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 95*a(n-1) -1900*a(n-2) -56187*a(n-3) +1896826*a(n-4) +10639671*a(n-5) -701967562*a(n-6) +182025504*a(n-7) +145227173547*a(n-8) -419177692530*a(n-9) -19353743252952*a(n-10) +85433587963187*a(n-11) +1789310766121030*a(n-12) -9814164235308092*a(n-13) -120060982729819483*a(n-14) +765035170825593245*a(n-15) +6017016207355416460*a(n-16) -43541812515518188378*a(n-17) -229165729445431519990*a(n-18) +1883135755161684947180*a(n-19) +6681559617272514956311*a(n-20) -63470576622786136682427*a(n-21) -148387908315962080864347*a(n-22) +1696040408430945413751419*a(n-23) +2441965221868975215665887*a(n-24) -36367868110504859946108233*a(n-25) -27123365069860973680044986*a(n-26) +631130053365999735351614148*a(n-27) +119980272688573408489016056*a(n-28) -8915897918476195422100426614*a(n-29) +2412340555420151638480078658*a(n-30) +102896759828837108198775563215*a(n-31) -68644270700583096858101003448*a(n-32) -971547304253211509401889501357*a(n-33) +995012323475586180840182952483*a(n-34) +7499405881793341784125165632547*a(n-35) -10232435340791417316913030684426*a(n-36) -47161621488766896200634807982479*a(n-37) +80820197825843514088408850293447*a(n-38) +239855811396646802214363695180830*a(n-39) -505732140134030094288174473059546*a(n-40) -972742523593329235306216393345880*a(n-41) +2543169520372173508071434849734048*a(n-42) +3058611451317489983173515035561168*a(n-43) -10342968088581061157016175191676640*a(n-44) -6977459283642089223709813906160960*a(n-45) +34073152101317101518285115092132992*a(n-46) +9114754028315599477362585372463872*a(n-47) -90726619705297606228840946528413184*a(n-48) +5712787931119845131108798817557504*a(n-49) +194093674517911624712078233321302016*a(n-50) -67650269415852823479141377504284672*a(n-51) -329954767661586600044634334076174336*a(n-52) +203840703277616818982293766396248064*a(n-53) +437172596651511261196700599060299776*a(n-54) -396576835852277476758522471722385408*a(n-55) -435146329265061509372084133603573760*a(n-56) +560513238066512908271893616141795328*a(n-57) +298566983364908489347607489997176832*a(n-58) -593417366209162076201649845555953664*a(n-59) -100638006616185019609324494583234560*a(n-60) +471240603234583504420313636037197824*a(n-61) -45562344037918621053683765849620480*a(n-62) -275706079523436749614843746456698880*a(n-63) +88841666981863575790183893881061376*a(n-64) +113767808816928441874153965636026368*a(n-65) -63784227683525892936104047204630528*a(n-66) -29715171577770889841433311723913216*a(n-67) +27937344701767998441500182090612736*a(n-68) +3035982582593744479341262252539904*a(n-69) -7898537092413062015374966248177664*a(n-70) +872457845406545206794050963767296*a(n-71) +1383835119274937089141022897733632*a(n-72) -406187967110938717076817165942784*a(n-73) -125911386037639966549457871306752*a(n-74) +71872362752322059117260567478272*a(n-75) +615381469617027062858438934528*a(n-76) -6230031747986295045906157797376*a(n-77) +962157249671359029077329575936*a(n-78) +201447367970440853444823613440*a(n-79) -73731760702864937441302675456*a(n-80) +3853709312871652730349813760*a(n-81) +1381244199549680888917786624*a(n-82) -266234332241304577659371520*a(n-83) +18796013717194851735306240*a(n-84) -487592409806823116242944*a(n-85)

%e Some solutions for n=4

%e ..0..0..1..1..1..2....0..1..1..1..0..2....0..1..2..0..1..2....0..0..0..0..0..0

%e ..0..1..0..0..1..1....1..0..0..0..0..2....0..1..2..0..1..2....0..1..1..0..1..1

%e ..1..0..0..1..0..0....1..1..1..1..0..0....1..1..2..0..1..1....0..0..1..0..0..0

%e ..0..0..1..0..1..0....1..2..2..1..0..1....1..2..2..0..1..2....1..0..1..1..1..0

%e ..0..1..1..0..1..1....2..1..2..1..1..0....1..2..0..0..1..1....1..1..1..2..1..0

%K nonn

%O 1,1

%A _R. H. Hardin_ Mar 16 2012

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 15 14:07 EDT 2024. Contains 374332 sequences. (Running on oeis4.)