login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: Sum_{n>=1} Fibonacci(n^3)*x^(n^3).
1

%I #6 Apr 07 2012 22:51:00

%S 1,0,0,0,0,0,0,21,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,196418,0,0,0,0,

%T 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

%U 10610209857723,0,0,0,0,0,0,0,0,0,0

%N G.f.: Sum_{n>=1} Fibonacci(n^3)*x^(n^3).

%C Compare g.f. to the Lambert series identity: Sum_{n>=1} A210826(n)*x^n/(1-x^n) = Sum_{n>=1} x^(n^3), where A210826(n) = kronecker(-3,d(n)) and d(n) is the number of divisors of n.

%F G.f.: Sum_{n>=1} A210826(n)*Fibonacci(n)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) = Sum_{n>=1} Fibonacci(n^3)*x^(n^3).

%e G.f.: A(x) = x + 21*x^8 + 196418*x^27 + 10610209857723*x^64 + 59425114757512643212875125*x^125 +...

%e where A(x) = x/(1-x-x^2) + (-1)*1*x^2/(1-3*x^2+x^4) + (-1)*2*x^3/(1-4*x^3-x^6) + (0)*3*x^4/(1-7*x^4+x^8) + (-1)*5*x^5/(1-11*x^5-x^10) + (+1)*8*x^6/(1-18*x^6+x^12)+ (-1)*13*x^7/(1-29*x^7-x^14) + (+1)*21*x^8/(1-47*x^8+x^16) + (0)*34*x^9/(1-76*x^9-x^18) + (+1)*55*x^10/(1-123*x^10+x^20)+ (-1)*89*x^11/(1-199*x^11-x^22) +...+ A210826(n)*Fibonacci(n)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) +...

%e The sequence A210826(n) = kronecker(-3, d(n)) begins:

%e [1,-1,-1,0,-1,1,-1,1,0,1,-1,0,-1,1,1,-1,-1,0,-1,0,1,1,-1,-1,0,1,1,...].

%o (PARI) {A210826(n)=if(n==0,0,kronecker(-3,numdiv(n)))}

%o {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}

%o {a(n)=polcoeff(sum(m=1, n, A210826(m)*fibonacci(m)*x^m/(1-Lucas(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))), n)}

%o for(n=1,125,print1(a(n),", "))

%Y Cf. A210826, A204060.

%K nonn

%O 1,8

%A _Paul D. Hanna_, Apr 07 2012