%I
%S 4,8,8,16,17,16,32,34,34,32,64,80,64,80,64,128,170,156,156,170,128,
%T 256,410,320,512,320,410,256,512,882,840,1076,1076,840,882,512,1024,
%U 2138,1792,4004,2176,4004,1792,2138,1024,2048,4610,4848,8612,8648,8648,8612
%N T(n,k)=1/4 the number of (n+1)X(k+1) 0..2 arrays with every 2X2 subblock having distinct edge sums
%C Table starts
%C ...4....8...16....32....64....128.....256......512.....1024......2048
%C ...8...17...34....80...170....410.....882.....2138.....4610.....11186
%C ..16...34...64...156...320....840....1792.....4848....10496.....28704
%C ..32...80..156...512..1076...4004....8612....33716....73028....291908
%C ..64..170..320..1076..2176...8648...18176....78800...168448....758816
%C .128..410..840..4004..8648..52784..114056...790712..1693448..12487208
%C .256..882.1792..8612.18176.114056..242176..1784720..3777536..30197792
%C .512.2138.4848.33716.78800.790712.1784720.22205984.48256784.672951728
%H R. H. Hardin, <a href="/A209382/b209382.txt">Table of n, a(n) for n = 1..577</a>
%e Some solutions for n=4 k=3
%e ..0..2..2..1....2..0..2..1....1..2..0..2....0..1..0..2....1..2..2..2
%e ..0..1..0..0....2..1..2..0....0..2..1..2....2..2..0..1....0..0..1..0
%e ..0..2..2..1....0..0..2..1....1..2..0..2....0..1..0..2....1..2..2..2
%e ..0..1..0..0....2..1..2..0....0..2..1..2....2..2..0..1....0..0..1..0
%e ..0..2..2..1....2..0..2..1....1..2..0..2....0..1..0..2....1..2..2..2
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_ Mar 07 2012
|