Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #31 Mar 18 2024 06:47:48
%S 1,2,40,2256,250496,46063360,12665422848,4866544707584,
%T 2490379333697536,1637285952230719488,1344814260872574402560,
%U 1349528279475362368847872,1624638302165034485761966080,2310920106523435237448955723776,3834278385523271302103123693142016
%N Number of functions f:{1,2,...,2n}->{1,2,...,2n} such that every preimage has an even cardinality.
%C Note that the empty set has even cardinality.
%H Seiichi Manyama, <a href="/A209289/b209289.txt">Table of n, a(n) for n = 0..210</a> (terms 0..80 from Alois P. Heinz)
%F a(n) = (2n)! * [x^(2n)] cosh(x)^(2n).
%F a(n) = Sum_{i=0..2*n} (n-i)^(2*n)*binomial(2*n,i). - _Vladimir Kruchinin_, Feb 07 2013
%F a(n) ~ c * n^(2*n) * 2^(2*n) * (1-r)^(2*n) / ((2-r)^n * r^n * exp(2*n)), where r = 0.1664434403990353015638385297757806508596082... is the root of the equation (2/r-1)^(1-r) = exp(2), and c = 1.66711311920192939687232294044843869828... = 2/A085984. - _Vaclav Kotesovec_, Sep 03 2014, updated Mar 18 2024
%e a(1) = 2 because there are 2 functions from {1,2} into {1,2} for which the preimage of both elements has even size: 1,1 (where the preimage of 1 is {1,2} and the preimage of 2 is the empty set) and 2,2 (where the preimage of 1 is the empty set and the preimage of 2 is {1,2}).
%p a:= n-> (2*n)! *coeff(series(cosh(x)^(2*n), x, 2*n+1), x, 2*n):
%p seq(a(n), n=0..20); # _Alois P. Heinz_, Jan 19 2013
%t nn=32;Select[Table[n!Coefficient[Series[Cosh[x]^n,{x,0,nn}],x^n],{n,0,nn}],#>0&]
%t a[ n_] := If[ n < 0, 0, With[{m = 2 n}, m! SeriesCoefficient[ Cosh[x]^m, {x, 0, m}]]]; (* _Michael Somos_, Jul 02 2017 *)
%o (PARI) {a(n) = if( n<0, 0, n=2*n; n! * polcoeff( cosh(x + x*O(x^n))^n, n))}; /* _Michael Somos_, Jul 02 2017 */
%Y Cf. A085984.
%K nonn
%O 0,2
%A _Geoffrey Critzer_, Jan 16 2013