Proof of Conjecture 2 and Related Properties of A209260.

Hartmut F. W. Höft

Let $\mathrm{T}(\mathrm{i}, \mathrm{j})=\frac{L_{2}}{2} \times(2 \times \mathrm{i}-\mathrm{j}+1)$, for all $\mathrm{i}, \mathrm{j} \in \mathbb{N}$ and $1 \leq \mathrm{j} \leq \mathrm{i}$, be the function defining the triangle in A 141419 .
For all $v \in \mathbb{N}$ define the set $B_{v}=\left\{\left.d+\frac{h-1}{2} \right\rvert\, v=d \times h \& d, h \in \mathbb{N} \& h\right.$ odd $\} \subset \mathbb{N}$.
Theorem: For all $v \in \mathbb{N}, v$ is in row i of $A 141419$ if and only if $i \in B_{v}$.
$" \Rightarrow$ ": Solving equation $v=T(i, j)$ with $1 \leq \mathrm{j} \leq \mathrm{i}$ gives $\mathrm{j}=\frac{1}{2}+\mathrm{i}-\sqrt{\left(\frac{1}{2}+i\right)^{2}-2 \times v}$ as the only possible
solution. Since $\mathrm{j} \in \mathbb{N}$, there is $\mathrm{k} \in \mathbb{N}, 0 \leq \mathrm{k}<\mathrm{i}$, such that $\sqrt{\left(\frac{1}{2}+i\right)^{2}-2 \times v}=\frac{1}{2}+k$ which is equivalent to $(\mathrm{i}-\mathrm{k}) \times(\mathrm{i}+\mathrm{k}+1)=2 \times \mathrm{v}$ and $\mathrm{i}-\mathrm{k}=\mathrm{j}$.
If j is odd then $\mathrm{j} \mid \mathrm{v}$ and $\frac{i+k+1}{2}=\frac{v}{j}$, in other words $\mathrm{i}=\frac{i-1}{2}+\frac{v}{j} \in B_{v}$.
If j is even then $\mathrm{i}+\mathrm{k}+1$ is odd and $\frac{i-k}{2} \times(\mathrm{i}+\mathrm{k}+1)=\mathrm{v}$ is an integer factorization. Therefore, $\frac{i}{2}=\frac{k}{2}+$ $\frac{v}{i+k+1}$ which leads to $\mathrm{i}=\frac{(i+k+1)-1}{2}+\frac{v}{i+k+1} \in B_{v}$.
In either case, if $v=T(i, j)$ then $i \in B_{v}$.
" \Leftarrow ": Let $\mathrm{i}=\mathrm{d}+\frac{h-1}{2} \in B_{v}$ with $\mathrm{v}=\mathrm{d} \times \mathrm{h}, \mathrm{d}, \mathrm{h} \in \mathbb{N}$ and h odd. Then $\mathrm{T}\left(\mathrm{d}+\frac{h-1}{2}, \mathrm{z}\right)=\mathrm{d} \times \mathrm{h}$ is equivalent to $(\mathrm{z}$ $-2 \times d) \times(z-h)=0$. Since $\frac{h+1}{2}>d$ is equivalent to $d+\frac{h-1}{2}<h$ and since $\frac{h+1}{2} \leq d$ is equivalent to $d+\frac{h-1}{2}$ $<d+\frac{h+1}{2} \leq 2 \times d$ exactly one of the two solutions $z=2 \times d$ and $z=h$ is in the index range $1 \ldots d+\frac{h-1}{2}$. Therefore, either $\mathrm{v}=\mathrm{T}\left(\mathrm{d}+\frac{h-1}{2}, 2 \times \mathrm{d}\right)$ or $=\mathrm{T}\left(\mathrm{d}+\frac{h-1}{2}, \mathrm{~h}\right)$.

Corollary 1: The row of triangle $A 209260$ in which $v \in \mathbb{N}$ occurs is the least element of B_{v}.
Corollary 2: Let $v=d \times h$ with $d, h \in \mathbb{N}$ and h odd. Then $v=T\left(d+\frac{h-1}{2}, h\right)$ when $\frac{h+1}{2} \leq d$ and $v=T(d+$ $\frac{h-1}{2}, 2 \times \mathrm{d}$) when $\frac{h+1}{2}>\mathrm{d}$.

