%I #15 Jan 15 2013 17:18:32
%S 0,0,0,0,1,3,6,10,15,22,33,51,80,125,193,295,449,684,1045,1600,2451,
%T 3752,5738,8770,13403,20488,31326,47903,73251,112003,171244,261812,
%U 400284,612008,935736,1430709,2187495,3344566,5113646,7818463,11953990
%N Number of binary words of length n such that there is at least one 0 and every run of consecutive 0's is of length >= 4.
%F O.g.f.: x^4/((1x)*(12*x+x^2x^5)), see Mathematica code for unsimplified form.
%e a(5) = 3 because we have: {0,0,0,0,0}, {0,0,0,0,1}, {1,0,0,0,0}.
%t nn=40; a=x^4/(1x); CoefficientList[Series[(a+1)/((1a x/(1x)))*1/(1x)1/(1x), {x,0,nn}], x]
%Y Cf. A000225, A077855, A130578.
%K nonn
%O 0,6
%A _Geoffrey Critzer_, Jan 12 2013
