%I #8 Jul 09 2018 08:23:46
%S 13,169,234,324,900,2500,6900,19044,52992,147456,407808,1127844,
%T 3135024,8714304,24123744,66781584,185488056,515199204,1427114052,
%U 3953139876,10974405204,30466306116,84427202016,233961820416,649289325600
%N Number of 5 X n 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 1 0 and 1 1 1 vertically.
%C Row 5 of A209224.
%H R. H. Hardin, <a href="/A209226/b209226.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = a(n-1) + 3*a(n-3) + 39*a(n-4) - 21*a(n-5) - 9*a(n-6) - 54*a(n-8) + 27*a(n-9) for n>12.
%F Empirical g.f.: x*(13 + 156*x + 65*x^2 + 51*x^3 - 438*x^4 - 5420*x^5 - 2032*x^6 + 3243*x^7 + 960*x^8 + 6855*x^9 + 2793*x^10 - 3078*x^11) / ((1 - x - 6*x^2 + 3*x^3)*(1 + 6*x^2 - 3*x^4 - 9*x^6)). - _Colin Barker_, Jul 09 2018
%e Some solutions for n=4:
%e ..0..1..1..0....0..1..1..0....0..1..1..1....0..1..1..0....1..1..1..1
%e ..0..0..1..1....0..1..1..1....0..1..1..0....1..0..0..1....0..0..1..1
%e ..1..0..0..1....1..0..0..1....1..0..0..1....1..1..1..1....1..1..0..0
%e ..1..1..1..0....1..1..0..0....1..0..0..1....0..1..1..0....1..1..0..1
%e ..0..1..1..0....0..1..1..1....0..1..1..0....1..0..0..1....0..0..1..1
%Y Cf. A209224.
%K nonn
%O 1,1
%A _R. H. Hardin_, Mar 06 2012
|