%I #5 Mar 30 2012 18:58:15
%S 1,2,1,3,5,3,4,10,14,7,5,16,32,37,17,6,23,58,97,98,41,7,31,93,197,287,
%T 257,99,8,40,138,348,642,830,670,239,9,50,194,562,1234,2024,2360,1737,
%U 577,10,61,262,852,2148,4198,6220,6617,4482,1393,11,73,343
%N Triangle of coefficients of polynomials u(n,x) jointly generated with A208339; see the Formula section.
%C Alternating row sums: 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...
%C For a discussion and guide to related arrays, see A208510.
%F u(n,x)=u(n-1,x)+(x+1)*v(n-1,x),
%F v(n,x)=x*u(n-1,x)+2x*v(n-1,x)+1,
%F where u(1,x)=1, v(1,x)=1.
%e First five rows:
%e 1
%e 2...1
%e 3...5....3
%e 4...10...14...7
%e 5...16...32...37...17
%e First three polynomials v(n,x): 1, 2 + x, 3 + 5x + 3x^2.
%t u[1, x_] := 1; v[1, x_] := 1; z = 16;
%t u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x];
%t v[n_, x_] := x*u[n - 1, x] + 2 x*v[n - 1, x] + 1;
%t Table[Expand[u[n, x]], {n, 1, z/2}]
%t Table[Expand[v[n, x]], {n, 1, z/2}]
%t cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
%t TableForm[cu]
%t Flatten[%] (* A209152 *)
%t Table[Expand[v[n, x]], {n, 1, z}]
%t cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
%t TableForm[cv]
%t Flatten[%] (* A208339 *)
%Y Cf. A208339, A208510.
%K nonn,tabl
%O 1,2
%A _Clark Kimberling_, Mar 07 2012