The OEIS is supported by the many generous donors to the OEIS Foundation.

Let L = A185064(n) be the n-th length for which a Golay sequence exists; a(n) = number of equivalence classes of Golay sequences of length L.

4

`%I #10 Aug 05 2015 03:44:50
`

`%S 1,1,1,5,2,36,25,1,336,220
`

`%N Let L = A185064(n) be the n-th length for which a Golay sequence exists; a(n) = number of equivalence classes of Golay sequences of length L.
`

`%H Dragomir Z. Dokovic, <a href="http://dx.doi.org/10.1016/S0012-365X(98)00034-X">Equivalence classes and representatives of Golay sequences</a>, Discrete Math. 189 (1998), no. 1-3, 79-93. MR1637705 (99j:94031).
`

`%Y Cf. A185064, A208924-A208929. A208927=A208928+A208929.
`

`%K nonn,more
`

`%O 1,4
`

`%A _N. J. A. Sloane_, Mar 03 2012
`