login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Rectangular table where the g.f. of row n satisfies: R(n,x) = 1 + x*R(n,x)^n * [d/dx x/R(n,x)] for n>=0, as read by antidiagonals.
3

%I #13 Mar 30 2012 18:37:37

%S 1,1,1,1,1,-2,1,1,-1,9,1,1,0,3,-56,1,1,1,0,-13,425,1,1,2,0,0,71,-3726,

%T 1,1,3,3,-1,0,-461,36652,1,1,4,9,0,1,0,3447,-397440,1,1,5,18,19,-12,0,

%U 0,-29093,4695489,1,1,6,30,72,0,-14,0,0,273343,-59941550

%N Rectangular table where the g.f. of row n satisfies: R(n,x) = 1 + x*R(n,x)^n * [d/dx x/R(n,x)] for n>=0, as read by antidiagonals.

%C The following property accounts for the zeros along the main diagonal.

%C The row g.f.s satisfy: [x^k] R(n,x)^(k-n+1) = [x^k] R(n,x)^(k-n) for k>=2

%C and thus when k=n we have [x^n] R(n,x) = [x^n] R(n,x)^0 = 0 for n>=2.

%H Paul D. Hanna, <a href="/A208896/b208896.txt">Rows n = 0..46, flattened.</a>

%e Coefficients in the n-th row g.f., R(n,x), of this table begins:

%e n=0: [1, 1,-2, 9, -56, 425, -3726, 36652, -397440, 4695489, ...];

%e n=1: [1, 1,-1, 3, -13, 71, -461, 3447, -29093, 273343, ...];

%e n=2: [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...];

%e n=3: [1, 1, 1, 0, -1, 1, 0, 0, -5, 27, ...];

%e n=4: [1, 1, 2, 3, 0, -12, -14, 43, 96, -50, ...];

%e n=5: [1, 1, 3, 9, 19, 0, -195, -732, -453, 6495, ...];

%e n=6: [1, 1, 4, 18, 72, 201, 0, -4200, -27984, -91044, ...];

%e n=7: [1, 1, 5, 30, 175, 880, 3106, 0, -114485,-1124735, ...];

%e n=8: [1, 1, 6, 45, 344, 2451, 14946, 64522, 0,-3805692, ...];

%e n=9: [1, 1, 7, 63, 595, 5453, 45927, 331177, 1704795, 0, ...];

%e n=10:[1, 1, 8, 84, 944,10550,112336,1094604, 9157984,55095601, 0,...]; ...

%e in which the main diagonal is zeros for n>=2.

%e Initial row g.f.s are illustrated by the following.

%e R(0,x) = 1 + x*[d/dx x/R(0,x)] begins:

%e R(0,x) = 1 + x - 2*x^2 + 9*x^3 - 56*x^4 + 425*x^5 - 3726*x^6 +...

%e which satisfies: [x^k] R(0,x)^(k+1) = [x^k] R(0,x)^k for k>=2.

%e ...

%e R(1,x) = 1 + x*R(1,x)*[d/dx x/R(1,x)] begins:

%e R(1,x) = 1 + x - x^2 + 3*x^3 - 13*x^4 + 71*x^5 - 461*x^6 + 3447*x^7 +...

%e which satisfies: [x^k] R(1,x)^k = [x^k] R(1,x)^(k-1) for k>=2.

%e ...

%e R(2,x) = 1 + x*R(2,x)^2*[d/dx x/R(2,x)] is satisfied by:

%e R(2,x) = 1 + x,

%e which satisfies: [x^k] R(2,x)^(k-1) = [x^k] R(2,x)^(k-2) = 0 for k>=2.

%e ...

%e R(3,x) = 1 + x*R(3,x)^3*[d/dx x/R(3,x)] begins:

%e R(3,x) = 1 + x + x^2 - x^4 + x^5 - 5*x^8 + 27*x^9 - 147*x^10 + 996*x^11 +...

%e which satisfies: [x^k] R(3,x)^(k-2) = [x^k] R(3,x)^(k-3) for k>=2.

%e ...

%o (PARI) {T(n,k)=local(ROWn=1+x+x*O(x^k));for(i=0,k,ROWn=1+x*ROWn^n*deriv(x/ROWn));polcoeff(ROWn,k)}

%o for(n=0,12,for(k=0,12,print1(T(n,k),","));print(""))

%Y Cf. A158883 (row 0), A158882 (row 1), A208897, A208898.

%K sign,tabl

%O 0,6

%A _Paul D. Hanna_, Mar 03 2012