The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A208888 G.f. satisfies: A(x) = 1 + x*(A(x) + A(-x)) + x^2*A(x)*A(-x). 2

%I #13 Mar 03 2016 11:09:49

%S 1,2,1,2,-2,-4,-11,-22,-14,-28,58,116,316,632,397,794,-2198,-4396,

%T -11954,-23908,-14684,-29368,95170,190340,517492,1034984,623764,

%U 1247528,-4462472,-8924944,-24270275,-48540550,-28820966,-57641932,220608454,441216908,1200216340

%N G.f. satisfies: A(x) = 1 + x*(A(x) + A(-x)) + x^2*A(x)*A(-x).

%H Paul D. Hanna, <a href="/A208888/b208888.txt">Table of n, a(n) for n = 0..300</a>

%F G.f.: A(x) = (1 - sqrt(1 - 4*x^2 + 16*x^4)) / (2*x^2*(1-2*x)).

%F Recurrence: (n+2)*a(n) = 2*(n+2)*a(n-1) + 4*(n-1)*a(n-2) - 8*(n-1)*a(n-3) - 16*(n-4)*a(n-4) + 32*(n-4)*a(n-5). - _Vaclav Kotesovec_, Aug 19 2013

%F |a(n)| ~ c * 3^(1/4)*2^(n+2)/(sqrt(Pi)*n^(3/2)), where c=(sqrt(3)+1)/2 if n=6k+0 or n=6k+1, c=(sqrt(3)-1)/2 if n=6k+2 or n=6k+3 and c=1 if n=6k+4 or n=6k+5. - _Vaclav Kotesovec_, Aug 19 2013

%e G.f.: A(x) = 1 + 2*x + x^2 + 2*x^3 - 2*x^4 - 4*x^5 - 11*x^6 - 22*x^7 +...

%e Related series:

%e A(x)+A(-x) = 2 + 2*x^2 - 4*x^4 - 22*x^6 - 28*x^8 + 116*x^10 + 632*x^12 +...

%e A(x)*A(-x) = 1 - 2*x^2 - 11*x^4 - 14*x^6 + 58*x^8 + 316*x^10 + 397*x^12 +...

%p A208888_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;

%p for w from 1 to n do a[w] := a[w-1] - add((-1)^j*a[j]*a[w-j-1], j=1..w-1) od;

%p convert(a, list); subsop(1=NULL,%); end: A208888_list(37); # _Peter Luschny_, Feb 29 2016

%t CoefficientList[Series[(1-Sqrt[1-4*x^2+16*x^4])/(2*x^2*(1-2*x)), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Aug 19 2013 *)

%o (PARI) {a(n)=local(A=1+x);for(i=1,n,A=1+x*(A+subst(A,x,-x+x*O(x^n)))+x^2*A*subst(A,x,-x+x*O(x^n)));polcoeff(A,n)}

%o for(n=0,40,print1(a(n),", "))

%Y Cf. A208887.

%K sign

%O 0,2

%A _Paul D. Hanna_, Mar 09 2012

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 18 02:52 EDT 2024. Contains 372617 sequences. (Running on oeis4.)