%I #5 Mar 31 2012 12:37:24
%S 10,100,282,927,3430,11067,34627,111642,356116,1121500,3542847,
%T 11196360,35283685,111150345,350234962,1103073000,3473204686,
%U 10936009567,34431544350,108396961047,341246282767,1074267088938,3381794658280
%N Number of nX4 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 1 1 and 1 0 1 vertically
%C Column 4 of A208688
%H R. H. Hardin, <a href="/A208684/b208684.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 4*a(n-1) -3*a(n-2) +10*a(n-3) -27*a(n-4) -6*a(n-5) -15*a(n-6) +51*a(n-7) +41*a(n-8) +31*a(n-9) -51*a(n-10) -29*a(n-11) -27*a(n-12) +15*a(n-13) +6*a(n-14) +3*a(n-15) -4*a(n-16) +a(n-17) +a(n-19)
%e Some solutions for n=4
%e ..0..1..1..0....1..0..1..0....0..1..1..0....1..1..0..0....1..1..0..1
%e ..0..1..1..0....1..1..1..0....1..1..0..1....0..1..0..1....1..1..0..1
%e ..1..1..0..1....1..0..1..1....0..1..0..0....0..1..0..0....0..1..1..0
%e ..0..1..0..0....1..0..1..0....0..1..0..0....1..0..1..0....0..1..0..0
%K nonn
%O 1,1
%A _R. H. Hardin_ Mar 01 2012