%I #8 Jul 03 2018 14:58:41
%S 10,100,330,1089,2508,5776,11020,21025,35670,60516,94710,148225,
%T 218680,322624,454968,641601,873090,1188100,1570690,2076481,2680260,
%U 3459600,4376580,5536609,6884878,8561476,10489710,12852225,15544560,18800896
%N Number of n X 4 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 1 and 0 1 1 vertically.
%C Column 4 of A208555.
%H R. H. Hardin, <a href="/A208551/b208551.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 2*a(n-1) + 4*a(n-2) - 10*a(n-3) - 5*a(n-4) + 20*a(n-5) - 20*a(n-7) + 5*a(n-8) + 10*a(n-9) - 4*a(n-10) - 2*a(n-11) + a(n-12).
%F Empirical g.f.: x*(10 + 80*x + 90*x^2 + 129*x^3 + 60*x^4 + 4*x^5 - 24*x^6 + 6*x^7 + 10*x^8 - 4*x^9 - 2*x^10 + x^11) / ((1 - x)^7*(1 + x)^5). _Colin Barker_, Jul 03 2018
%e Some solutions for n=4:
%e ..0..1..1..1....0..1..0..0....0..1..1..0....0..1..1..1....0..1..0..1
%e ..0..1..1..0....1..0..1..1....0..1..0..1....0..1..0..1....1..0..1..1
%e ..0..1..0..1....0..1..0..0....0..1..1..0....0..1..1..0....0..1..0..0
%e ..0..1..1..0....1..0..1..1....0..1..0..1....0..1..0..0....1..0..1..1
%Y Cf. A208555.
%K nonn
%O 1,1
%A _R. H. Hardin_, Feb 28 2012