%I
%S 0,2,4,8,14,26,40,68,100,156,224,334,466,668,920,1278,1726,2356,3130,
%T 4190,5508,7254,9422,12268,15764,20284,25852,32934,41616,52578,65938,
%U 82648,102976,128144,158660,196222,241534,296946,363632,444650,541794,659268,799606
%N Total sum of the sums of all positive kth ranks of all partitions of n.
%C For the definition of kth rank see A208478.
%e For n = 4 the partitions of 4 and the four types of ranks of the partitions of 4 are
%e 
%e Partitions First Second Third Fourth
%e of 4 rank rank rank rank
%e 
%e 4 41 = 3 01 = 1 01 = 1 01 = 1
%e 3+1 32 = 1 11 = 0 01 = 1 00 = 0
%e 2+2 22 = 0 22 = 0 00 = 0 00 = 0
%e 2+1+1 23 = 1 11 = 0 10 = 1 00 = 0
%e 1+1+1+1 14 = 3 10 = 1 10 = 1 10 = 1
%e 
%e The sums of positive kth ranks of the partitions of 4 are 4, 1, 2, 1 so the total sum is a(4) = 4+1+2+1 = 8.
%Y Row sums of triangle A208482.
%Y Cf. A208478, A208479.
%K nonn
%O 1,2
%A _Omar E. Pol_, Mar 07 2012
%E More terms from _Alois P. Heinz_, Mar 11 2012
