login
Number of nX5 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 0 and 0 1 1 vertically
1

%I #5 Mar 31 2012 12:37:23

%S 16,256,1260,5139,18395,55404,161975,440436,1153772,2954920,7358199,

%T 18095775,43901536,105437749,251614320,596577792,1408720236,

%U 3315012663,7779082371,18219094740,42597676899,99472838332,232059665500

%N Number of nX5 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 0 and 0 1 1 vertically

%C Column 5 of A208420

%H R. H. Hardin, <a href="/A208417/b208417.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 5*a(n-1) -28*a(n-3) -4*a(n-4) +124*a(n-5) +22*a(n-6) -334*a(n-7) -121*a(n-8) +609*a(n-9) +318*a(n-10) -744*a(n-11) -365*a(n-12) +523*a(n-13) +50*a(n-14) -302*a(n-15) +682*a(n-16) +206*a(n-17) -1062*a(n-18) -316*a(n-19) +974*a(n-20) +164*a(n-21) -554*a(n-22) +112*a(n-23) +194*a(n-24) -262*a(n-25) -58*a(n-26) +300*a(n-27) -41*a(n-28) -135*a(n-29) +14*a(n-30) +62*a(n-31) -54*a(n-32) +8*a(n-33) +20*a(n-34) +2*a(n-35) -13*a(n-36) +7*a(n-37) -2*a(n-39) -a(n-40) +a(n-41)

%e Some solutions for n=4

%e ..0..1..1..1..1....1..1..1..1..1....0..1..0..1..0....1..1..1..1..1

%e ..1..1..1..1..1....0..1..1..1..1....0..1..0..1..1....1..1..1..1..0

%e ..0..1..0..1..0....0..1..1..1..1....1..0..1..0..0....0..1..0..1..1

%e ..1..1..0..1..1....1..1..1..1..1....0..1..0..1..1....0..1..0..1..0

%K nonn

%O 1,1

%A _R. H. Hardin_ Feb 26 2012