

A208361


"1ply" palindromic primes; see Comments.


2



2, 3, 5, 7, 100030001, 100050001, 100060001, 100111001, 100131001, 100161001, 100404001, 100656001, 100707001, 100767001, 100888001, 100999001, 101030101, 101060101, 101141101, 101171101, 101282101, 101292101, 101343101, 101373101, 101414101, 101424101, 101474101
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

From the Ribenboim book: palindromic primes whose length is not a palindromic prime.
a(42046) = 999727999 and a(42047) = 1000008000001. [Charles R Greathouse IV, Feb 26 2012]


REFERENCES

Paulo Ribenboim, The New Book of Prime Number Records, SpringerVerlag New York Inc., 1996, p. 160161.


LINKS

Alvin Hoover Belt and T. D. Noe, Table of n, a(n) for n = 1..10000 (first 100 terms from Alvin Hoover Belt)


EXAMPLE

2 is a palindromic prime of 1 digit, but 1 is not prime, therefore 2 is a 1ply palindromic prime.
100050001 is a palindromic prime of 9 digits, but 9 is composite, therefore 100050001 is a 1ply palindromic prime.


MATHEMATICA

t = {2, 3, 5, 7}; n = 10000; While[n <= 99999 && Length[t] < 100, n = n + 1; d = IntegerDigits[n]; d2 = FromDigits[Join[d, Rest[Reverse[d]]]]; If[PrimeQ[d2], AppendTo[t, d2]]]; t (* T. D. Noe, Jun 03 2013 *)


CROSSREFS

Cf. A109830.
Sequence in context: A037948 A007659 A288715 * A145380 A136740 A105994
Adjacent sequences: A208358 A208359 A208360 * A208362 A208363 A208364


KEYWORD

nonn,base


AUTHOR

Alvin Hoover Belt, Feb 25 2012


EXTENSIONS

a(5)a(26) from Charles R Greathouse IV, Feb 26 2012


STATUS

approved



