%I #8 Jun 30 2018 14:24:38
%S 12,144,636,3900,21096,119580,665892,3733080,20874900,116842500,
%T 653759952,3658440924,20471559852,114555114720,641024680212,
%U 3587040344820,20072307438840,112320368080068,628520819264292
%N Number of 6 X n 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 1 and 1 1 0 vertically.
%C Row 6 of A208287.
%H R. H. Hardin, <a href="/A208290/b208290.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 4*a(n-1) + 11*a(n-2) - 10*a(n-3) - 10*a(n-4) + 6*a(n-5) + 2*a(n-6) - a(n-7).
%F Empirical g.f.: 12*x*(1 - x)*(1 + 9*x + 3*x^2 - 6*x^3 - x^4 + x^5) / (1 - 4*x - 11*x^2 + 10*x^3 + 10*x^4 - 6*x^5 - 2*x^6 + x^7). - _Colin Barker_, Jun 30 2018
%e Some solutions for n=4:
%e ..0..1..1..0....0..1..1..0....1..1..0..1....0..1..0..0....1..1..1..1
%e ..0..1..0..1....0..1..1..0....1..1..0..0....1..0..1..1....0..1..1..1
%e ..0..1..0..1....0..1..1..0....1..1..0..0....1..1..1..1....1..1..1..1
%e ..0..1..0..1....0..1..1..0....1..1..0..0....1..0..1..1....1..1..1..1
%e ..0..1..0..1....0..1..1..0....1..1..0..0....1..1..1..1....1..1..1..1
%e ..0..1..0..1....0..1..1..0....1..1..0..0....1..0..1..1....1..1..1..1
%Y Cf. A208287.
%K nonn
%O 1,1
%A _R. H. Hardin_, Feb 25 2012