%I
%S 10,100,390,2090,9900,49130,239490,1175440,5754050,28195750,138110340,
%T 676601470,3314477450,16237031560,79541647910,389658289890,
%U 1908854053840,9351079145150,45808984336150,224408665354600,1099331244406030
%N Number of 5 X n 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 1 and 1 1 0 vertically.
%C Row 5 of A208287.
%H R. H. Hardin, <a href="/A208289/b208289.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 3*a(n-1) + 10*a(n-2) - 2*a(n-3) - 7*a(n-4) + a(n-6).
%F Empirical g.f.: 10*x*(1 + 7*x - x^2 - 6*x^3 + x^5) / (1 - 3*x - 10*x^2 + 2*x^3 + 7*x^4 - x^6). - _Colin Barker_, Jun 30 2018
%e Some solutions for n=4:
%e ..0..1..0..0....1..0..1..0....0..1..0..1....0..1..0..0....1..1..1..1
%e ..1..1..1..0....0..1..1..0....1..0..1..1....1..1..1..1....1..1..1..1
%e ..1..1..0..0....1..1..1..0....1..0..1..1....0..1..1..1....1..1..1..1
%e ..1..1..1..0....1..1..1..0....1..0..1..1....1..1..1..1....1..1..1..1
%e ..1..1..1..0....1..1..1..0....1..0..1..1....1..1..1..1....1..1..1..1
%Y Cf. A208287.
%K nonn
%O 1,1
%A _R. H. Hardin_, Feb 25 2012
|