%I #5 Mar 31 2012 12:37:19
%S 9,81,289,900,3249,11449,42436,157609,597529,2280100,8791225,34093921,
%T 133033156,521345889,2051093521,8093881156,32021313025,126943276681,
%U 504097160004,2004526450969,7979839669321,31795772223076,126783929266569
%N Number of nX4 0..1 arrays avoiding 0 0 1 and 0 1 1 horizontally and 0 0 1 and 1 0 0 vertically
%C Column 4 of A207752
%H R. H. Hardin, <a href="/A207748/b207748.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 9*a(n-1) -15*a(n-2) -70*a(n-3) +208*a(n-4) +148*a(n-5) -795*a(n-6) +15*a(n-7) +1267*a(n-8) -318*a(n-9) -840*a(n-10) +280*a(n-11) +176*a(n-12) -64*a(n-13) for n>14
%e Some solutions for n=4
%e ..1..1..1..1....1..0..0..0....0..1..0..0....1..0..0..0....0..1..0..0
%e ..0..0..0..0....1..1..0..1....0..1..0..1....0..1..0..0....0..0..0..0
%e ..1..1..1..1....0..1..0..0....0..0..0..0....1..0..0..0....0..1..0..0
%e ..0..0..0..0....1..1..0..1....0..1..0..1....1..1..0..0....0..0..0..0
%K nonn
%O 1,1
%A _R. H. Hardin_ Feb 19 2012