%I
%S 10,100,450,2205,11970,66946,383845,2221688,12947130,75691595,
%T 443447550,2600917830,15265923595,89639239300,526483671750,
%U 3092701866155,18169057652502,106746028836790,627171773700111,3684942718387344
%N Number of nX4 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 1 and 1 0 0 vertically
%C Column 4 of A207717
%H R. H. Hardin, <a href="/A207713/b207713.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 8*a(n-1) +6*a(n-2) -138*a(n-3) +52*a(n-4) +850*a(n-5) -487*a(n-6) -2284*a(n-7) +1340*a(n-8) +2858*a(n-9) -1584*a(n-10) -1736*a(n-11) +885*a(n-12) +500*a(n-13) -238*a(n-14) -60*a(n-15) +28*a(n-16) +2*a(n-17) -a(n-18) for n>19
%e Some solutions for n=4
%e ..1..0..1..0....0..1..1..0....0..1..1..0....1..0..1..0....1..1..1..1
%e ..0..1..1..0....1..1..0..0....0..1..0..0....0..1..0..0....1..1..0..1
%e ..1..0..1..0....0..1..1..0....0..1..1..0....1..1..1..0....0..1..1..1
%e ..0..1..1..0....1..1..1..0....0..1..1..0....0..1..1..0....1..0..1..0
%K nonn
%O 1,1
%A _R. H. Hardin_ Feb 19 2012
|