login
A207702
Number of n X 7 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 1 and 1 1 0 vertically.
1
40, 1600, 13230, 61254, 206910, 571350, 1369900, 2956980, 5883084, 10965220, 19372210, 32726250, 53222130, 83765514, 128131680, 191146120, 278888400, 398920680, 560542294, 775071790, 1056157830, 1420120350, 1886323380
OFFSET
1,1
COMMENTS
Column 7 of A207703.
LINKS
FORMULA
Empirical: a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8).
Conjectures from Colin Barker, Jun 25 2018: (Start)
G.f.: 2*x*(20 + 640*x + 775*x^2 - 1013*x^3 + 259*x^4 + 31*x^5 - 12*x^6) / (1 - x)^8.
a(n) = (n*(162 - 327*n - 881*n^2 + 1296*n^3 + 997*n^4 + 183*n^5 + 10*n^6)) / 36.
(End)
EXAMPLE
Some solutions for n=4:
..0..1..1..1..0..0..1....0..1..1..0..0..1..1....1..1..1..1..1..1..1
..1..0..0..1..1..0..0....0..0..1..1..1..0..1....0..1..1..1..1..0..1
..0..1..1..1..0..0..1....0..1..1..0..0..1..1....1..1..1..1..1..1..1
..0..1..1..1..1..0..0....0..0..1..1..0..1..1....0..1..1..1..1..0..1
CROSSREFS
Cf. A207703.
Sequence in context: A207728 A207598 A208117 * A207907 A208038 A207857
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 19 2012
STATUS
approved