%I #12 Jun 24 2018 14:43:17
%S 13,169,312,1014,3094,9698,30056,93782,291304,908102,2822456,8795098,
%T 27344824,85186790,264915456,825119802,2566427032,7992283078,
%U 24862380608,77416150058,240852113528,749890083670,2333208210944,7263866039898
%N Number of 5 X n 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 1 and 1 1 1 vertically.
%C Row 5 of A207589.
%H R. H. Hardin, <a href="/A207592/b207592.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = -a(n-1) + 11*a(n-2) + 13*a(n-3) - 18*a(n-4) - 18*a(n-5) + 6*a(n-6) + 4*a(n-7) for n>9.
%F Empirical g.f.: 13*x*(1 + 14*x + 26*x^2 - 54*x^3 - 99*x^4 + 66*x^5 + 86*x^6 - 20*x^7 - 16*x^8) / ((1 + x)*(1 - 11*x^2 - 2*x^3 + 20*x^4 - 2*x^5 - 4*x^6)). - _Colin Barker_, Jun 24 2018
%e Some solutions for n=4:
%e 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 0 1 1 1
%e 0 1 0 0 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1
%e 1 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0
%e 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 0 0 1 1 0
%e 0 1 0 0 0 1 0 0 0 1 0 0 1 1 1 0 1 0 1 0
%Y Cf. A207589.
%K nonn
%O 1,1
%A _R. H. Hardin_, Feb 19 2012
|