%I
%S 9,81,166,438,1042,1992,4168,8174,15881,30801,58335,111083,209072,
%T 391336,731541,1358864,2519079,4655423,8579122,15779179,28954160,
%U 53037211,96982948,177063128,322816525,587759306,1068885187,1941639552,3523372673
%N Number of nX4 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 1 1 1 vertically
%C Column 4 of A207514
%H R. H. Hardin, <a href="/A207510/b207510.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = -a(n-1) +4*a(n-2) +14*a(n-3) +5*a(n-4) -31*a(n-5) -67*a(n-6) -28*a(n-7) +76*a(n-8) +171*a(n-9) +113*a(n-10) -61*a(n-11) -229*a(n-12) -197*a(n-13) -27*a(n-14) +154*a(n-15) +175*a(n-16) +71*a(n-17) -46*a(n-18) -89*a(n-19) -45*a(n-20) -6*a(n-21) +32*a(n-22) +12*a(n-23) +10*a(n-24) -7*a(n-25) -a(n-26) -2*a(n-27) +a(n-28) for n>32
%e Some solutions for n=4
%e ..1..1..0..0....1..0..0..1....1..1..0..1....1..1..0..1....1..1..0..0
%e ..1..1..1..1....0..1..0..0....1..1..1..1....1..0..0..1....0..0..1..0
%e ..0..0..1..0....1..1..0..1....0..0..1..0....0..1..0..0....0..1..0..0
%e ..0..1..0..0....1..0..0..1....0..1..0..0....0..1..0..1....0..1..0..0
%K nonn
%O 1,1
%A _R. H. Hardin_ Feb 18 2012
|