

A207480


a(n) = (3/2)*(1+prime(n))  prime(n+1).


2



1, 2, 1, 5, 4, 8, 7, 7, 14, 11, 16, 20, 19, 19, 22, 29, 26, 31, 35, 32, 37, 37, 38, 46, 50, 49, 53, 52, 44, 61, 61, 68, 61, 74, 71, 74, 79, 79, 82, 89, 82, 95, 94, 98, 89, 95, 109, 113, 112, 112, 119, 112, 121, 124, 127, 134, 131, 136, 140, 133, 134, 151
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,2


COMMENTS

Conjecture: a(n) > 0 for all n (cf. A062234).
Note that a(1) = 3/2 hence offset is 2.
There are many cases of two successive terms of the same value, the first case is a(8)=a(9)=7: p(8)=19, p(9)=23, p(10)=29, (3/2)*(1+19)23 = (3/2)*(1+23)29 = 7.
The first case of 3 equal successive terms is a(691..693)=2588 for corresponding 4 consecutive primes primes p(691..694)= 5189, 5197, 5209, 5227.
The first case of 4 equal successive terms is a(12702874..12702878)=15579672 for corresponding 5 consecutive primes primes p(12702874..12702878)= 231159373,231159389,231159413,231159449,231159503.
Also of interest are cases with a(n)>a(n1), e.g., a(27..29): 53, 52, 44 (the general tendency is, of course, increasing a(n) with n).


LINKS

Zak Seidov, Table of n, a(n) for n = 2..1001


MAPLE

a:= n> 3*(1+ithprime(n))/2ithprime(n+1):
seq(a(n), n=2..63); # Alois P. Heinz, Feb 14 2022


MATHEMATICA

(3(#[[1]]+1)/2)#[[2]]&/@Partition[Prime[Range[2, 70]], 2, 1] (* Harvey P. Dale, Jul 27 2016 *)


PROG

(PARI) a(n) = my(p=prime(n)); (3/2)*(1+p)  nextprime(p+1); \\ Michel Marcus, Feb 14 2022


CROSSREFS

Cf. A062234.
Sequence in context: A176053 A259791 A325771 * A166517 A019473 A056605
Adjacent sequences: A207477 A207478 A207479 * A207481 A207482 A207483


KEYWORD

nonn


AUTHOR

Zak Seidov, Feb 18 2012


STATUS

approved



