%I
%S 12,55,176,441,989,1904,3504,5925,9652,14850,22390,32305,45920,63323,
%T 86112,114393,150567,194218,248704,313495,392480,485024,596300,724705,
%U 876876,1051011,1254512,1485177,1752481,2052448,2396864,2781317,3218508
%N Number of 0..n arrays x(0..4) of 5 elements with each no smaller than the sum of its two previous neighbors modulo (n+1)
%C Row 5 of A207100
%H R. H. Hardin, <a href="/A207102/b207102.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = -3*a(n-1) -2*a(n-2) +5*a(n-3) +12*a(n-4) +9*a(n-5) -3*a(n-6) -14*a(n-7) -19*a(n-8) -17*a(n-9) -3*a(n-10) +20*a(n-11) +32*a(n-12) +20*a(n-13) -3*a(n-14) -17*a(n-15) -19*a(n-16) -14*a(n-17) -3*a(n-18) +9*a(n-19) +12*a(n-20) +5*a(n-21) -2*a(n-22) -3*a(n-23) -a(n-24)
%e Some solutions for n=5
%e ..2....2....0....3....0....0....3....3....0....0....3....0....4....4....4....3
%e ..2....3....1....5....4....4....4....3....3....3....3....1....4....4....4....4
%e ..5....5....5....2....4....5....3....3....5....4....4....3....4....4....4....5
%e ..3....3....4....4....2....4....3....5....5....2....3....4....4....3....2....4
%e ..4....5....3....0....1....3....5....5....4....2....1....2....4....4....0....4
%K nonn
%O 1,1
%A _R. H. Hardin_ Feb 15 2012
|