%I #5 Mar 31 2012 12:37:15
%S 5,15,45,140,441,1382,4322,13511,42238,132051,412840,1290698,4035218,
%T 12615643,39441343,123308779,385510576,1205254047,3768086810,
%U 11780485818,36830320820,115145720853,359989724116,1125466066030,3518638952555
%N Number of 0..4 arrays x(0..n-1) of n elements with each no smaller than the sum of its two previous neighbors modulo 5
%C Column 4 of A207100
%H R. H. Hardin, <a href="/A207096/b207096.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 3*a(n-1) +a(n-2) -2*a(n-3) +a(n-5) +2*a(n-8) -a(n-10) +3*a(n-11) -2*a(n-12) +a(n-13) -a(n-14) -2*a(n-15) +a(n-16) -2*a(n-17) +a(n-19) -3*a(n-21) +a(n-25)
%e Some solutions for n=5
%e ..1....0....1....2....0....0....0....2....1....3....1....0....2....4....1....1
%e ..3....0....4....3....4....0....1....3....3....3....2....2....4....4....4....4
%e ..4....1....1....2....4....2....4....4....4....2....3....4....2....3....1....4
%e ..4....3....2....4....3....4....1....3....2....3....2....3....3....2....0....3
%e ..3....4....4....4....2....1....2....3....2....1....0....2....0....4....1....2
%K nonn
%O 1,1
%A _R. H. Hardin_ Feb 15 2012