login
a(n) = phi(lambda(n)), where phi = A000010, lambda = A002322.
3

%I #28 Mar 19 2016 10:04:51

%S 1,1,1,1,2,1,2,1,2,2,4,1,4,2,2,2,8,2,6,2,2,4,10,1,8,4,6,2,12,2,8,4,4,

%T 8,4,2,12,6,4,2,16,2,12,4,4,10,22,2,12,8,8,4,24,6,8,2,6,12,28,2,16,8,

%U 2,8,4,4,20,8,10,4,24,2,24,12,8,6,8,4,24,2,18

%N a(n) = phi(lambda(n)), where phi = A000010, lambda = A002322.

%D W. J. LeVeque, Topics in Number Theory. Addison-Wesley, Reading, MA, 2 vols., 1956, Vol. 1, p. 55, Theorem 4.10.

%H Reinhard Zumkeller, <a href="/A206941/b206941.txt">Table of n, a(n) for n = 1..10000</a>

%H R. D. Carmichael, <a href="http://dx.doi.org/10.1090/S0002-9904-1910-01892-9">Note on a new number theory function</a>, Bull. Amer. Math. Soc. 16 (1909-10), 232-238.

%t Table[EulerPhi@ CarmichaelLambda@ n, {n, 96}] (* _Michael De Vlieger_, Mar 18 2016 *)

%o (Haskell)

%o a206941 = a000010 . a002322 -- _Reinhard Zumkeller_, Feb 18 2012

%o (PARI) a(n)=eulerphi(lcm(znstar(n)[2])) \\ _Charles R Greathouse IV_, Feb 21 2013

%Y Cf. A000010, A002322, A077197.

%K nonn

%O 1,5

%A _N. J. A. Sloane_, Feb 13 2012