%I
%S 81,306,306,1233,972,1233,4884,3168,3168,4884,19509,11205,12429,11205,
%T 19509,77580,35922,39306,39306,35922,77580,309057,123357,133866,
%U 145824,133866,123357,309057,1230480,408198,437340,495858,495858,437340,408198
%N T(n,k) = number of (n+1) X (k+1) 0..2 arrays with no 2 X 2 subblock having the number of clockwise edge increases equal to the number of counterclockwise edge increases in its adjacent leftward or upward neighbors.
%C Table starts
%C ......81.....306....1233.....4884.....19509.....77580.....309057.....1230480
%C .....306.....972....3168....11205.....35922....123357.....408198.....1376754
%C ....1233....3168...12429....39306....133866....437340....1528920.....4972464
%C ....4884...11205...39306...145824....495858...1824315....6254364....22950822
%C ...19509...35922..133866...495858...2243139...8405508...33297948...125846844
%C ...77580..123357..437340..1824315...8405508..39044748..167821686...751671621
%C ..309057..408198.1528920..6254364..33297948.167821686..964315869..4586324364
%C .1230480.1376754.4972464.22950822.125846844.751671621.4586324364.27362301828
%H R. H. Hardin, <a href="/A206277/b206277.txt">Table of n, a(n) for n = 1..262</a>
%e Some solutions for n=4, k=3:
%e ..2..1..1..0....2..2..1..1....1..0..1..1....1..0..0..1....0..2..0..2
%e ..2..0..0..2....1..1..0..0....1..1..2..1....2..1..1..2....0..0..1..1
%e ..2..0..0..2....1..1..0..0....1..1..1..0....1..1..1..2....0..0..1..1
%e ..0..1..1..0....2..2..1..0....0..1..1..0....1..1..2..1....0..1..2..2
%e ..0..1..1..0....2..2..2..1....1..0..0..1....1..2..1..1....1..2..2..2
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Feb 05 2012
