%I
%S 256,564,564,3092,6668,3092,19660,91924,91924,19660,125236,1269044,
%T 2761756,1269044,125236,797996,17521788,83120732,83120732,17521788,
%U 797996,5085012,241927532,2502596196,5465582068,2502596196,241927532
%N T(n,k) = number of (n+1) X (k+1) 0..3 arrays with every 2 X 3 or 3 X 2 subblock having exactly three counterclockwise and three clockwise edge increases.
%C Table starts:
%C ......256.........564...........3092..............19660................125236
%C ......564........6668..........91924............1269044..............17521788
%C .....3092.......91924........2761756...........83120732............2502596196
%C ....19660.....1269044.......83120732.........5465582068..........359793857820
%C ...125236....17521788.....2502596196.......359793857820........51845281856116
%C ...797996...241927532....75353928196.....23692759265020......7476894104333060
%C ..5085012..3340355572..2268967605164...1560344155530612...1078605317680077404
%C .32403084.46121153588.68320694237116.102763262525972772.155614824084934672796
%H R. H. Hardin, <a href="/A206137/b206137.txt">Table of n, a(n) for n = 1..144</a>
%e Some solutions for n=4, k=3:
%e ..3..0..1..0....2..1..2..3....0..1..3..2....0..1..3..0....0..1..2..3
%e ..0..3..0..3....3..2..0..1....1..2..0..3....1..2..0..1....2..0..1..2
%e ..1..0..2..0....0..3..1..3....3..0..1..0....2..3..1..2....0..2..3..0
%e ..2..1..0..1....3..2..0..1....2..3..0..2....0..1..2..0....1..0..1..3
%e ..3..2..1..2....1..3..1..0....3..2..3..0....1..2..0..1....0..3..0..2
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Feb 04 2012
|