%I #5 Mar 31 2012 12:37:07
%S 1764,24045,327501,4541781,63696738,900968550,12813949461,
%T 182896937223,2616373388967,37480339156782,537385377081930,
%U 7709105507436804,110628756167804304,1587897993004527084,22794662152538771142
%N Number of (n+1)X4 0..2 arrays with the number of clockwise edge increases in every 2X2 subblock the same
%C Column 3 of A205909
%H R. H. Hardin, <a href="/A205904/b205904.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 29*a(n-1) -230*a(n-2) -305*a(n-3) +11727*a(n-4) -49396*a(n-5) +5444*a(n-6) +515772*a(n-7) -1409760*a(n-8) +86551*a(n-9) +7096107*a(n-10) -16531052*a(n-11) +15251786*a(n-12) +1909440*a(n-13) -19513805*a(n-14) +19659411*a(n-15) -4800430*a(n-16) -9042857*a(n-17) +12258669*a(n-18) -7003400*a(n-19) +708918*a(n-20) +1799474*a(n-21) -1404920*a(n-22) +462715*a(n-23) +42533*a(n-24) -69882*a(n-25) +21674*a(n-26) -4628*a(n-27) +416*a(n-28)
%e Some solutions for n=4
%e ..1..0..0..2....2..0..2..2....1..2..0..2....1..2..0..0....1..0..2..0
%e ..1..1..2..2....2..2..2..1....0..2..1..0....2..0..2..1....1..0..0..0
%e ..0..1..2..0....0..0..1..1....1..0..2..1....2..1..0..2....2..2..0..1
%e ..0..1..2..2....1..0..1..0....2..1..0..2....0..2..1..0....2..0..0..0
%e ..0..1..1..1....0..0..0..0....0..2..1..0....1..0..2..1....2..0..1..1
%K nonn
%O 1,1
%A _R. H. Hardin_ Feb 01 2012