%I #5 Mar 30 2012 18:37:34
%S 1,1,3,8,26,79,276,936,3376,12259,45648,171739,655664,2524835,9813259,
%T 38410167,151332137,599541153,2387199083,9547195445,38335338712,
%U 154484001619,624579964260,2532713370789,10298393401623,41979975505800,171522040764060
%N G.f. satisfies: A(x) = 1/Product_{n>=1} (1 - x^n*A(x^n)^n).
%e G.f.: A(x) = 1 + x + 3*x^2 + 8*x^3 + 26*x^4 + 79*x^5 + 276*x^6 + 936*x^7 +...
%e where
%e A(x) = 1/((1 - x*A(x)) * (1 - x^2*A(x^2)^2) * (1 - x^3*A(x^3)^3) *...).
%o (PARI) {a(n)=local(A=1+x); for(i=1, n, A=1/prod(k=1, n, (1-x^k*subst(A, x, x^k+x*O(x^n))^k))); polcoeff(A, n)}
%Y Cf. A050383, A196192, A205774, A196191.
%K nonn
%O 0,3
%A _Paul D. Hanna_, Jan 31 2012
|