%I
%S 14,50,50,194,275,194,770,1562,1562,770,3074,8948,12866,8948,3074,
%T 12290,51458,107330,107330,51458,12290,49154,296774,904514,1329947,
%U 904514,296774,49154,196610,1716002,7690946,16820450,16820450,7690946,1716002
%N T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with every 2X2 subblock having the same number of equal diagonal or antidiagonal elements, and new values 0..2 introduced in row major order
%C Table starts
%C .....14......50.......194.........770..........3074...........12290
%C .....50.....275......1562........8948.........51458..........296774
%C ....194....1562.....12866......107330........904514.........7690946
%C ....770....8948....107330.....1329947......16820450.......216561893
%C ...3074...51458....904514....16820450.....323378690......6379775618
%C ..12290..296774...7690946...216561893....6379775618....194089073306
%C ..49154.1716002..65916482..2826905666..128108142146...6018114334610
%C .196610.9946442.568956866.37314167621.2604800794754.188843661927722
%H R. H. Hardin, <a href="/A205361/b205361.txt">Table of n, a(n) for n = 1..144</a>
%e Some solutions for n=4 k=3
%e ..0..0..0..0....0..0..0..0....0..0..1..1....0..1..2..0....0..0..1..1
%e ..0..0..0..0....1..0..1..0....1..2..2..2....1..2..2..2....0..1..1..2
%e ..0..0..0..0....0..2..0..2....1..0..1..0....0..1..2..0....2..0..1..1
%e ..0..0..0..0....0..0..0..0....1..2..1..0....0..0..1..2....2..2..0..1
%e ..0..0..0..0....0..2..0..2....1..0..1..2....2..0..0..1....2..1..2..0
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_ Jan 26 2012
|