login
Ordered differences of squared primes.
4

%I #16 Apr 18 2022 09:46:53

%S 5,21,16,45,40,24,117,112,96,72,165,160,144,120,48,285,280,264,240,

%T 168,120,357,352,336,312,240,192,72,525,520,504,480,408,360,240,168,

%U 837,832,816,792,720,672,552,480,312,957,952,936,912,840,792,672

%N Ordered differences of squared primes.

%C For a guide to related sequences, see A204892.

%H Michael S. Branicky, <a href="/A204914/b204914.txt">Table of n, a(n) for n = 1..10000</a>

%e a(1) = s(2) - s(1) = 9 - 4 = 5;

%e a(2) = s(3) - s(1) = 25 - 4 = 21;

%e a(3) = s(3) - s(2) = 25 - 9 = 16;

%e a(4) = s(4) - s(1) = 49 - 4 = 45.

%t (See the program at A204916.)

%o (Python)

%o from math import isqrt

%o from sympy import prime, primerange

%o def aupton(terms):

%o sqps = [p*p for p in primerange(1, prime(isqrt(2*terms)+1)+1)]

%o return [b-a for i, b in enumerate(sqps) for a in sqps[:i]][:terms]

%o print(aupton(52)) # _Michael S. Branicky_, May 21 2021

%Y Cf. A204908, A204900, A204892.

%K nonn

%O 1,1

%A _Clark Kimberling_, Jan 20 2012