%I
%S 0,1,2,3,7,9,18,47,123,161,322,843,2207,2889,5778,15127,39603,51841,
%T 103682,271443,710647,930249,1860498,4870847,12752043,16692641,
%U 33385282
%N Numbers such that floor(a(n)^2 / 5) is a square.
%C Also: Numbers whose square, with its last base5 digit dropped, is again a square. (For the three initial terms whose squares have only one digit in base 5, it is then understood that this yields zero.)
%F a(n) = sqrt(A055812(n)).
%F Empirical g.f.: x^2*(x+1)*(3*x^6 + 4*x^5 + 14*x^4  5*x^3  2*x^2  x1) / ((x^4  4*x^2  1)*(x^4 + 4*x^2  1)).  _Colin Barker_, Sep 15 2014
%o (PARI) b=5;for(n=0,2e9,issquare(n^2\b) && print1(n","))
%Y Cf. A031149, A055812, A204502, A204514, A204516, A204518 and A004275, A001075, A001541 for the analog in bases 10,...,6 and 4, 3, 2.
%K nonn
%O 1,3
%A _M. F. Hasler_, Jan 15 2012
