%I #5 Mar 31 2012 12:37:01
%S 47883,347247,3588983,45603178,518498299,5787193185,70339685822,
%T 814228386252,9204305943740,109804560803318,1279132641376136,
%U 14612311774229902,172230893696813240,2009977920248093908
%N Number of (n+2)X4 0..2 arrays with every 3X3 subblock having three strictly increasing elements in a row horizontally, vertically or nw-to-se diagonally
%C Column 2 of A204408
%H R. H. Hardin, <a href="/A204402/b204402.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 9*a(n-2) +1405*a(n-3) +2993*a(n-4) +6990*a(n-5) -315063*a(n-6) -613391*a(n-7) -2273244*a(n-8) +676631*a(n-9) +17849170*a(n-10) -7846430*a(n-11) +10274954*a(n-12) -70166717*a(n-13) +42969746*a(n-14) +240417414*a(n-15) -315371199*a(n-16) -622366785*a(n-17) -1449702147*a(n-18) +678506787*a(n-19) +1613205171*a(n-20) +5474271942*a(n-21) +5320562958*a(n-22) +2946640590*a(n-23) +7655777046*a(n-24) +5086973502*a(n-25) +18357895944*a(n-26) +14540459526*a(n-27) +22148256384*a(n-28) -867311712*a(n-29) for n>32
%e Some solutions for n=3
%e ..1..1..0..2....1..0..2..2....0..2..0..1....0..1..2..1....0..0..1..2
%e ..1..2..1..0....2..0..1..1....0..1..1..0....0..1..2..1....0..1..2..1
%e ..2..0..2..1....0..1..2..2....0..2..2..1....0..0..1..2....2..1..2..2
%e ..0..1..2..2....2..2..1..0....0..1..2..2....2..1..2..2....1..0..1..2
%e ..2..2..1..2....1..0..1..2....0..0..1..2....1..0..2..1....0..1..2..1
%K nonn
%O 1,1
%A _R. H. Hardin_ Jan 15 2012
|