login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A204291 G.f.: Sum_{n>=1} moebius(n)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)), where Lucas(n) = A000204(n). 3

%I

%S 1,0,1,0,4,-3,12,0,17,-10,88,-54,232,-28,184,0,1596,-969,4180,-1230,

%T 4632,-198,28656,-17388,60020,-520,98209,-23604,514228,-461932,

%U 1346268,0,1722688,-3570,6672168,-5598882,24157816,-9348,31351552,-18606210,165580140

%N G.f.: Sum_{n>=1} moebius(n)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)), where Lucas(n) = A000204(n).

%C Compare g.f. to the identity: x = Sum_{n>=1} moebius(n)*fibonacci(n)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)).

%H Paul D. Hanna, <a href="/A204291/b204291.txt">Table of n, a(n) for n = 1..1024</a>

%F a(k) = 0 iff k = 2^n for n>=1.

%e G.f.: A(x) = x + x^3 + 4*x^5 - 3*x^6 + 12*x^7 + 17*x^9 - 10*x^10 + 88*x^11 +...

%e where A(x) = x/(1-x-x^2) - x^2/(1-3*x^2+x^4) - x^3/(1-4*x^3-x^6) - x^5/(1-11*x^5-x^10) + x^6/(1-18*x^6+x^12) +...+ moebius(n)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) +...

%o (PARI) {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}

%o {a(n)=polcoeff(sum(m=1,n,moebius(m)*x^m/(1-Lucas(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))),n)}

%Y Cf. A203847, A000204 (Lucas).

%K sign

%O 1,5

%A _Paul D. Hanna_, Jan 14 2012

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 3 14:19 EDT 2022. Contains 357237 sequences. (Running on oeis4.)