login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of the Fresnel Integral Integral_{x>=0} sin(x^3) dx.
3

%I #16 May 26 2023 05:45:01

%S 4,4,6,4,8,9,7,5,5,7,8,4,6,2,4,6,0,5,6,0,9,2,8,2,1,5,6,8,2,9,1,1,2,9,

%T 4,0,6,8,8,1,1,4,8,9,6,3,2,6,2,1,6,8,5,0,1,5,8,4,0,4,7,2,1,2,6,5,0,6,

%U 9,6,0,1,6,9,4,6,2,3,9,6,9,9,2,3,4,9,7,1,4,8,1,7,3,5,3,1,4,6,4,9,0,3,1,9,3

%N Decimal expansion of the Fresnel Integral Integral_{x>=0} sin(x^3) dx.

%C Imaginary part associated with A204067.

%H R. J. Mathar, <a href="http://arxiv.org/abs/1211.3963">Series expansion of generalized Fresnel integrals</a>, arXiv:1211.3963 [math.CA], 2012, eq. (3.8).

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Fresnel_integral">Fresnel Integral</a>.

%F Equals Pi/(Gamma(2/3)* 3^(3/2)) = A073010 / A073006.

%F (this value)^2 + A204067^2 = A202623^2.

%F Equals Gamma(1/3)/6 = A073005 / 6. - _Amiram Eldar_, May 26 2023

%e 0.446489755784624605609282...

%p evalf(Pi/GAMMA(2/3)/3^(3/2) ) ;

%t RealDigits[Gamma[1/3]/6, 10, 120][[1]] (* _Amiram Eldar_, May 26 2023 *)

%Y Cf. A073005, A073010, A073006, A202623, A204067

%K nonn,cons,easy

%O 0,1

%A _R. J. Mathar_, Jan 10 2013