Maple-assisted proof of empirical formula for A203884

There are $7^{6}=117649$ possible rows, but instead of defining a 117649×117649 matrix we can take advantage of symmetry to work with "states" corresponding to the $A 000110(6)=203$ partitions of $\{1, \ldots, 6\}$ into subsets. Given a state s, let A_{s} be the set of assignments x of numbers $0 \ldots 6$ to $1 \ldots 6$ so that $x_{i}=x_{j}$ if and only if i and j are in the same set of the partition. Given states s and t and any assignment $x \in A_{s}$, let $T_{s t}$ be the number of $y \in A_{t}$ such that x and y could be used in adjacent rows of an array counted by this sequence, i.e. for i from 1 to $5, x_{i}=y_{i+1}$ or $y_{i}=x_{i+1}$.

```
\(\lceil\) States \(:=\) combinat:-setpartition ([\$1..6]):
    T:= Matrix \((203,203)\) :
    for ii from 1 to 203 do
        s:= States[ii];
        X:= Vector(6):
        for \(i\) from 1 to nops(s) do \(x[s[i]]:=\) i od:
        for jj from 1 to 203 do
        t:=States[jj];
        nt:= nops (t) ;
        Y:= Vector (6) ;
        for \(p\) in combinat:-permute([\$0..6],nt) do
                for \(i\) from 1 to nt do \(Y[t[i]]:=p[i]\) od:
                good:= true;
                for \(i\) from 1 to 5 do if \(X[i]<>Y[i+1]\) and \(Y[i]<>X[i+1]\) then
good:= false; break fi od;
                if good then T[ii,jj]:= T[ii,jj]+1 fi
            od
        od;
    od:
```

Now we should have $a(n)=u^{T} T^{n} v$ where $u_{i}=\left|A_{s(i)}\right|$ and $t_{i}=1$ for all i. To verify this, I will compute
the first few terms of the sequence. It will be useful to compute $T^{n} v$ iteratively rather than actually
taking powers of T.
> u:= Vector[row] (203, i -> 7!/(7-nops(States[i]))!):
v:= Vector $(203,1):$
Tv[0]:= v:
for nn from 1 to 12 do $T v[n n]:=T \cdot T v[n n-1]$ od:
\gg seq(u . Tv[nn], $n n=1 . .10$);
18193357, 6601376089, 2880436707253, 1337957259758497, 632382967906147549,
300614697430789927465, 1431310842261399994444805, 68183470583835920750899441,
32485295368125261340573143277,15477975279195312357768613147129
[Now the empirical formula is
$>\operatorname{Emp}:=a(n)=565 * a(n-1)-26916 * a(n-2)-8476092 * a(n-3)+587809224 *$
$a(n-4)$-6796290096*a(n-5) -158295697632*a(n-6) +2605874815296*a
($n-7$) -2681418764160*a $(n-8)-55173588410880 * a(n-9)$
+65536012915200*a(n-10) +108491436288000*a $(n-11)$
-105573943296000*a (n-12)
$E m p:=a(n)=565 a(n-1)-26916 a(n-2)-8476092 a(n-3)+587809224 a(n-4)$
$-6796290096 a(n-5)-158295697632 a(n-6)+2605874815296 a(n-7)$
$-2681418764160 a(n-8)-55173588410880 a(n-9)+65536012915200 a(n-10)$

$$
+108491436288000 a(n-11)-105573943296000 a(n-12)
$$

This corresponds to saying $u^{T} T^{n} P(T) v=0$ where P is the following polynomial.

$$
\left[\begin{array}{rl}
>\mathrm{P}:=\mathbf{x}^{\wedge} 12-\operatorname{add}\left(\text { coeff }(\mathbf{r h s}(\text { Emp }), \mathrm{a}(\mathrm{n}-\mathbf{j})) * \mathbf{x}^{\wedge}(12-\mathrm{j}), \mathrm{j}=0 \ldots \mathbf{1 2)} ;\right. \\
P: & x^{12}-565 x^{11}+26916 x^{10}+8476092 x^{9}-587809224 x^{8}+6796290096 x^{7} \\
& +158295697632 x^{6}-2605874815296 x^{5}+2681418764160 x^{4}+55173588410880 x^{3} \\
& -65536012915200 x^{2}-108491436288000 x+105573943296000
\end{array}\right.
$$

We compute $P(T) v$ using the previously computed values of $T^{n} v$, and verify that it is 0 :
$Q:=\operatorname{add}(\operatorname{coeff}(P, x, j) * T v[j], j=0 . .12):$
LinearAlgebra:-Equal (Q,Vector (203)) ;
true
(3)
(4)

Thus we have $u^{T} T^{n} P(T) v=0$. This completes the proof.

